Theory-Inspired Optimizations for Privacy Preserving Distributed OLAP Algorithms

نویسندگان

  • Alfredo Cuzzocrea
  • Elisa Bertino
چکیده

Actually, a lot of attention focusing on the problem of computing privacy-preserving OLAP cubes effectively and efficiently arises. State-of-theart proposals rather focus on an algorithmic vision of the problem, and neglect relevant theoretical aspects the investigated problem introduces naturally. In order to fulfill this gap, in this paper we provide algorithms for supporting privacy-preserving OLAP in distributed environments, based on the well-known CUR matrix decomposition method, enriched by some relevant theory-inspired optimizations that look at the intrinsic nature of the investigated problem in order to gain significant benefits, at both the (privacy-preserving) cube computation level and the (privacy-preserving) cube delivery level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comprehensive Theoretical Framework for Privacy Preserving Distributed OLAP

This paper complements the privacy preserving distributed OLAP framework proposed by us in a previous work by introducing four major theoretical properties that extend models and algorithms presented in the previous work, where the experimental validation of the framework has also been reported. Particularly, our framework makes use of the CUR matrix decomposition technique as the elementary co...

متن کامل

Experimental Analysis of Privacy-Preserving Statistics Computation

The recent investigation of privacy-preserving data mining and other kinds of privacy-preserving distributed computation has been motivated by the growing concern about the privacy of individuals when their data is stored, aggregated, and mined for information. Building on the study of selective private function evaluation and the efforts towards practical algorithms for privacy-preserving data...

متن کامل

Experimental analysis of a privacy-preserving scalar product protocol

The recent investigation of privacy-preserving data mining has been motivated by the growing concern about the privacy of individuals when their data is stored, aggregated, and mined for information. In an effort towards practical algorithms for privacy-preserving data mining solutions, we analyze and implement solutions to an important primitive: the privacy-preserving scalar product of two ve...

متن کامل

A Constraint-Based Framework for Computing Privacy Preserving OLAP Aggregations on Data Cubes

A constraint-based framework for computing privacy preserving OLAP aggregations on data cubes is proposed and experimentally assessed in this paper. Our framework introduces a novel privacy OLAP notion, which, following consolidated paradigms of OLAP research, looks at the privacy of aggregate patterns defined on multidimensional ranges rather than the privacy of individual tuples/data-cells, l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014